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Heat t ransfer  is considered for  a viscoplastic mater ia l  of nonlinear type flowing with d i s -  
sipation in a c i rcu la r  tube with developed laminar  flow and boundary conditions of the f i r s t  
kind. 

There  is much interest  in heat t r ans fe r  in the laminar  flow of sys tems in c i rcu la r  tubes. The problem 
has been considered in reasonable  detail for  Newtonian liquids [1]. See [2] for  the flow of a non-Newtoniaa 
liquid subject to a power law and dissipative heating. Forced  l~minar  convection of heat in a viscoptast ie 
medium of Shvedov-Bingham type without dissipation was examined in [3], and the case  of internal viscous 
heating was studied in [4-7]. However,  all these papers  give only a r e s t r i c t ed  range of eigenvalues, e igen,  
functions, and basic coefficients for  the Four ie r  expansion. Calculations for  viscoplastie media have been 
given for  three  or four values of the plast ici ty pa ramete r ,  which makes it difficult to use them for  other 
conditions, par t icu lar ly  for  the flow near  the inlet to a tube. 

Here  we solve the G r e t z -  Nusselt problem with allowance for  dissipation for  a viscoplast ic compos i -  
tion of nonlinear type descr ibed by the rheological  equation 

I I I 
.~- = .?,T + (%~,')~ (1) 

which was proposed in [8]. 

In (1), r ands- 0 a re  the shear  s t r e s s  and l imiting shear  s t r e s s ,  7;p is the analog of the plastic viscosi ty,  
is the shear  ra te ,  and n and m are  real  numbers  that can take any values.  

Here  we use the curves  of (1) with the condition n = m,  i . e . ,  

I 1 1 - 

x-ff = "~'~ q - rip �9 (la) 

Direct  integration of (la) with the condition of adhesion at the wall [9] gives the velocity distribution 
ac ros s  the tube with a s teady laminar  flow and constant physical proper t ies  for the liquid: 

n 2 n - - k  

. ( p ) _  __aR2 1)kc  o n . Oo-  n ( , - 9  ~ ) (2) 
2~]p zn - -  

0 

Here  p = r / R ,  r is the current  radius,  R is the radius of the tube, a = AP// is the p r e s s u r e  fall along a 
length l, a0 = ~0/Tw = r0/R is the dimensionless radius of the quasired zone, Tw iS the shear  s t r e s s  at the 
wall, C k a re  binomial coefficients,  and n is as appears in (la). 

The shear  s t ress  is less  than T0 near  the axis, and the mater ia l  moves along the tube as a solid at the 

constant  veloci ty  
aR ~ , ~  nC~ko/. ~n--k 

u ( % ) :  U m . x - -  - -  ) 2~lp , , ~  2n- -  k 
0 
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The velocity function is put in dimensionless form as 

( - -  l y  ~/n( ~ -  ,~ 
k % ~p --co 

u(r) = ~ = 1 o 
t/max Umax 

(4) 

where 

k n 2n--k 

- (, _oo ) ttma z = ( - -  1) 2 n - - - ~ -  

Equations (2)-(4) are reasonably convenient for computation if n does not exceed 4; larger values lead 

to reduced accuracy because the series are sign-varying and the terms in the summation are similar in 

magnitude. The error is particularly large for ~0 --~ I. Formula (4) has [9] been put in the form 

1 1 n-F1F n--i n--i n--1 . -k]  

Z ~" 2n,lP "~- Cn+k--1 (0"0~)) - ~ -  
J 1 --. 2 (5) 

0 

which enables one to do the calculation of ~ for any n and ~0 with the required degree of accuracy,  

The following is the energy equation for one-dimensional s teady-s ta te  flow with constant physical 
charac ter i s t ics  incorporating viscous dissipation but neglecting the axial leakage of heat by conduction: 

Ot ~ a ( r a t l . ~ T r z  I d u t ,  p*Cpu(r) Oz - - - r - "  0~-\ Or ] do ] (6) 

where p*, Cp, k are respectively the density, specific heat, and thermal conductivity of the medium, while 

z is the axial coordinate. 

This solution was compared with that in [8] by assuming that the liquid enters the heat-transfer sec- 
tion at a temperature t o constant over the cross section and with the velocity profile described by (2). Then 
we have the following system of equations and boundary conditions if we neglect the mass forces for the 
problem of (la) for a circular tube with a constant wall temperature tw: 

R Oz R~p a p p + %~ - -  R~' 
(7) 

u ~ j  p:O 

where 

,, (r) 
ttmax 

We substitute in (7) for Umax from (3) and introduce 

aR~ andPe = 2w p* CpRR. 

Then the factor 0*Cpu.maxR/k becomes 

! ~ n + l ~  n-k 
o n  P*C~UmaxR- Pe (1-2-~ ~~ ~l~',C:+a-,oo" =PeF(n, oo), 

where, f rom [9], 

F (n ,  (~o) - 
1--(~o C~+k_~ c~ I--(~o ~ ) ' ~ ,  ~ - -  C2n--k--I  00 . 

C ~ C ~ _ i  o 2n--1 1 

(8 )  
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We use the relations 

aR 1 1 n 

d p 2~lp 
D - 

16~]p0) 2 

;~ (to - -  G) 

and the dimensionless variables 

to t ransform (7) finally to 

X = Z and ~ = t--  t w 
2R Pe t o --  t~' 

2 a--X= p a-p k Op] +DO 

0# =0 ;  ~(0, o ) = l .  ( x ,  i )  = (9) 

We put the solution to (9) as the sum of two functions: ~ = ~1 + ~2, of which the f i rs t  $I(X, p) sat isfies 
the corresponding homogeneous equation with the boundary conditions of (9), while the second sat isf ies  the 
inhomogeneous equation with zero boundary conditions. 

It is c lear  that ~i in this case coincides with the Gre tz -Nusse l t  solution [1]: 

2[~ X ~1 (X, p)---- Z C~ exp ( - -  F ) %(~h9), (I0) 
0 

where f~k and ~k are the eigenvalues and the functions for the Sturm-Liouville problem 

(p~p~), _[_ ~2pq~ (p) r -- O, (11) 

r (]) = ~ (o) = o, 

where the C k axe the coefficients in the expansion of ~0(0, p) = 1 with respect  to the eigerffunctions ~/)k with 
the weight Pgo(O). 

The part icular  solution 02 to (9) we put as a ser ies  in the eigenfunctions ~b k with the coefficients de- 
pendent on the argument X: 

~z (X, p) = Z A4 (X) r ([~4, P). (12) 
0 

We substitute for #2(X, p) in (9) to get 

or,  using (11), 

F ~ dAk ~ (pn __non) 
-Cp (9) ~.,i-ffX ~k= --P- , ~  Ah (P~;)'-~-DP 

0 0 

| • - - ' n  

F ~ .  dAh ~ z V s  A ~ * i , =  DO (p"- -ao  ~ ) ( p  (p) 

0 0 

(13) 

(13a) 

We expand p(plln-alo/n)/q~(p) as a Four ier  ser ies  with respect  to the Z/)k to get 

f-V dAb 
2 /--a dX ~k~ A h ~ k = D  a~a, 

0 0 0 

w h e r e  

(13b) 

ab. = 

I I i n  
.le ( # - w )  ,, 

0 
1 

2 d .I P'~ q')*~ P 
0 

(14) 
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Variation of the mean-mass  tempera ture  along the length 
of the tube: a) n = 1 (Shvedov-Bingham model): 1) ~0 = 0 (New- 
ionian liquid); 2) 0.3; 3) 0.6; 4) 0.8; b) % = 0.5; 1) n = 1; 2) 2; 3) 3 
(D = 0; 25). 

As (13b) should be obeyed for any ~/)k, the coefficients to the terms containing the ~bk are zero, 

F dA k 
2 dX + A k ~ = Dab; A k (0) 0. (15) 

The solution to (15) is the function 

Ah(X)= D a~ [1--exp (-- 2~-~-X) ] 

Then (12) is put as 

~z (X, p) = D a--h-h ~ [1--exp ( - - ~ x ) J  % ( ~ ,  9). 
0 

Formulas  (10) and (17) give the general solution to the probkem of (9): 

~ = ~ 1 @ ~ 2 =  ~ C k e x p  ( 2~ X ) ,~ + D ' ~  ah [ 2 )] -- F ~ ~ 1--exp(--2--~F~X %" 
0 0 

From (18) we isolate the quantity 

O r  

0 

(16) 

(17) 

(18) 

(19) 

1 - - t  w - -  ~ ah - ~  %, (19a) 

O 

which is the tempera ture  r i se  due to the fr ict ional  heat  [10]. 

The f i r s t  t e rm  in (18) falls f rom 1 for X = 0 to zero for X -~ o% whereas the second ser ies  increases  
with X f rom zero for  X = 0 to the maximum value of ~ , f o r  X -* co; if there  is no dissipative heat production, 
i . e . ,  if D = 0, then (18) reduces to (10). 

The tempera ture  distribution is known, so it is easy to determine the mean-mass  tempera ture  of the 
liquid ill a given cross  sect ion [1]: 

I 

~ F t o _ l ~ t ~ , 2 _  j" u~ ax ~(p (9)pdp. (20) 
0 

In turn 
i 

-~= 2 Spu(p)d0, 
0 
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F ig .  2. Var ia t ion  of the  t e m p e r a t u r e  g rad ien t  at the wall 
along the  length  of the tube :  a) n = 1: 1) ~0 = 0; 2) 0.3; 3) 
0.6; 4) 0.8; b) (~o = 0.5 (D = 0; 25):  1) n = 1; 2) 2; 3) 3. 

whence  

u- -- ~pT(p)dp. 2~.~ 
0 

Substi tut ion of (21) into (20) g ives  

1 

~-= o 
l 

J' o,p (o) d o 
0 

We subs t i tu te  f r o m  [9] the va lues  f o r  u and Uma x to  r e p r e s e n t  the  denomina to r  of (22) as  

o r  

w h e r e  

! 

11 = ~ o~ (p) d p = 
0 

3n--I k 

C~,,_, ~ C" 4n--k--1 1~ 
0 

n--!  k"  

C" 4Cg._, ~ 2.-k-, ~o ~ 
0 

We subs t i tu te  into (22) the  value of ~ f r o m  (18) and use  (11) to get  

~o 

1 

0 

0 

1 /d%'~ 1 ah ( d %  / 
B~-- 2 C h I T ] o = , ;  bk-  2 \ do ]o=' 

(21) 

(22) 

(23) 

(24) 

(25) 

Equat ion (24) defines the  m e a n - m a s s  t e m p e r a t u r e  of the m e d i u m  as  a funct ion of the  r educed  length  
X = (1 /Pe ) (z /d ) ,  the d i ss ipa t ion  p a r a m e t e r ,  and F.  F i g u r e  1 shows a f~mf ly  of c u r v e s  f o r  ~ as  a funct ion 
of X fo r  n = 1 f o r  a s e r i e s  of values  of ~0 and D. The c u r v e s  f o r  ~(X, D, a0, n) f o r  the  va r ious  n and D with 
cr = 0.5 a r e  shown in F ig .  2 (the b roken  l ines  c o r r e s p o n d  to  the  absence  of d i ss ipa t ion ,  i . e . ,  to  the  c a s e  of 

D ~  0). 

We a s c r i b e  the  loca l  h e a t - t r a n s f e r  coef f ic ien t  to  the  t e m p e r a t u r e  d i f f e rence  t w - t -  to  get  f o r  Nu the 

e x p r e s s i o n  

N u = ~  \ 0 p / o = , "  
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F i g .  3. V a r i a t i o n  of l o c a l  N u s s e l t  n u m b e r  a long  t h e  l eng th  of t he  t u b e :  a) n = 1; 
1) if0= 0 ; 2 )  0 . 5 ; 3 )  0 . 0 8 ; b )  if0= 0.5:  1) n = 3 ; 2 )  2; 3) 1 ; c )  n = 3 :  1) (%= 0.8; 2) 
0.5; 3) 0.3; 4) 0.1. 

We s u b s t i t u t e  f o r  ~ f r o m  (18) and fo r  ~ f r o m  (24) to  ge t  

Nu = 2[ 1 o o~o (26) 

D 0 

La F i g .  2a  g r a p h s  of -O#/Oplp = l a r e s h o w n  fo r  a s e r i e s  of v a l u e s  of ~0 and D f o r  n = 1 (the Shvedov 
- B i n g h a m  m o d e l ) ;  t he  b r o k e n  c u r v e s  c o r r e s p o n d  to t he  a b s e n c e  of d i s s i p a t i o n .  In F i g .  2b c u r v e s  a r e  g iven  
f o r  - 0 # / O p l p  = 1 = f(X, D, a0, n) fo r  v a r i o u s  v a l u e s  of n and D and at  a0 = 0.5. 

We can  g ive  f o r m u l a  (26) a s o m e w h a t  d i f f e r e n t  f o r m  f o r  c o n v e n i e n c e  in a n a l y s i s ;  we use  (19) to  r e -  
w r i t e  t he  e x p r e s s i o n  (18) as  

Qe 

0 

Then we have  

F \ 0p /p=i 
Nu = 2I~ o (26a) 

1 

0 0 

F o r  X -~ ~ t h e  s e r i e s  in t he  n u m e r a t o r  of (26a) b e c o m e s  s m a l l  i~. c o m p a r i s o n  wi th  the  t e m p e r a t u r e  
1 

g r a d i e n t  a t  the  w a l l ,  w h i l e  t he  s e r i e s  in t he  d e n o m i n a t o r  b e c o m e s  smM1 by  c o m p a r i s o n  with  f v~*q~(p ) pdp , 
and Nu t e n d s  to  the  c o n s t a n t  va lue  0 

Nu~ = - - 2 I  1 ~ 
2 ~,qD(O) p d p  
0 

To d e t e r m i n e  the  l i m i t i n g  va lue  of Nu in a n a l y t i c a l  f o r m  we  r e p r e s e n t  3 ,  as  

0 ,  = D ( - -  1) k C~ n cro" ( 1 - -  p~-k 4,,-~ 
4n - -  k " -~- ~0 ~ in p), 

0 

(28) 
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where n is as in (laS, in par t icu lar  n = 1 for  the Shvedov-Bingham model and n = 2 for  the Casson model.  
We see that (19) and (28) a re  equivalent to the formulas  of [10]. 

For  a Newtonian liquid (~0 = 0), we have f rom (4), (235, and (28) that 

1 1 (0~,~ ----_ 
~ , =  D(1--P4); ~ ( p ) = l - - p ~ ;  I 1 -  4 ;  \~-pJ,=~ - -D;  

1 

; e ,~(o)pd p = 5 0 .  
96 

0 

Then (27) shows that Nur 48/5 = 9.6, which corresponds  to the value found previously [11] by a solu-  
tion of this problem for a Newtonian liquid., 

The curves  for  Nu(z /Pe  d, D, (r 0, n) for  a Shvedov-Bingh~m medium for  various a0 and D are  shown in 
Fig.  3a; the broken lines in Fig.  3a represen t  the Nu(z/lOe d, D) curves  for  a Newtonian liquid. 

In Fig.  3b the relat ionship N u ( z / P e d ,  D, a0, n) is shown for  various n and D with a0 = 0.5; it is c l e a r  
that Nu increases  with X m o r e  or  l e s s  rapidly  as a function of D and tends to the l imit ing value Nuoo, which, 
in this case  (non-Newtonian liquid) is a function of ~r 0 and n. 

Fo r  a0 = 0.5 (Fig. 3b), Nu~o takes the following values:  14 f o r n  = 1, 1 6 f o r  n = 2, and 18 for  n = 3~ 
i. e . ,  Nu~ increases  with the nonlineari ty pa rame te r .  It is evident f rom Fig.  3c that Nu~ also increases  
with 00. Calculations were  per formed f rom (26) for  n = 1-3 and go = 0.1-0.8 with steps of 0.1; these showed 
that Nuoo in the presence  of dissipation increases  f rom 9.8 to 18 for  n = 1, f rom 10.2 to 34.5 for  n = 2, and 
f rom 10.8 to 39.4 fo r  n = 3. In the absence of dissipation, this s~me range of variat ion in o 0 causes  Nur o to 
inc rease  f rom 3.8 to 4.8 for  n = 1, f rom 4.0 to 5.0 for  n = 2, and f r o m  4.2 to 5.2 for  n -- 3. For  n of 4 and 
5 we pe r fo rm the calculations only for  cr 0 = 0.5; in this case ,  we get for  dissipation that Nuoo = 20.7 for  
n ~ 4 and 23 for  n = 5, while in the absence of dissipation Nu~ = 4.8 and 4.9 respect ive ly .  

Then a non-Newtoniau sys tem descr ibed by (la5 in a c i r cu la r  tube has higher  Nt~o than does a New- 
tonian liquid under the same conditions; the sgme may  be said even for  the absence of dissipation, but in 
this case  the effects of the plast ici ty and nonlineari ty pa rame te r s  are  much less  (the Nu~ for  a Newtonian 

liquid is 3.66 in the absence of dissipation5. 

Thermal  stabilization occurs  over a length at the end of which Nt~o (for given ~0 and n) differs f r o m  
the final value by not m o r e  than 1%; this length is dependent on D and decreases  as the la t ter  inc reases  

(Fig. 35. 

These resul ts  indicate that dissipation in the form of heat causes  a considerable  inc rease  in N~ and, 
consequently, in the local  heat - t~ansfer  coefficients a~o; this increase  in due bas ica l ly  to the radical  change 
in the t empera tu re  profile,  which is due to the marked increase  in the t empera tu re  gradients  near  the wall, 
where there  is par t icu lar ly  marked mechanical  energy convers ion.  Figure  3 shows that this r i se  is less  
pronounced at small  differences f rom the inlet, but it is decisive f r o m  the point of minfmum on the curve  
for  Nu(z) = f ( 1 / P e ,  z /d ,  D, g0, n), which moves towards the s ta r t  of the tube as D inc reases .  

The i teration method of [12] was used to determine the f i r s t  eigenvalues and eigenfunctiens; the 

essence of this for  (11) is as follows. 

We multiply both par ts  of (11) by Z~k and integrate f rom 0 to 1 to get 
1 1 

o 0 

whence integration by par ts  gives 

1 

[ ~ = e h =  0 l (29) 

j' (p) e o 
o 
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We assgme for the zeroth approximation that 

~ o , =  . ~ !  . . . . .  , (30) 

which is derived from the asymptotic solution of (Ii) [8]. 

We substitute for S(k~ into 
(~,~), + ~o~p~ (p),~ = o (31) 

and solve the Cauchy problem for this equation by the Runge-Kutta method with the boundary conditions 
~(0) = 0, ~k(0) = 1 to get approximate values for the eigenfunctions at the points Pi in the iaterval (0.1-~k 

I 

(~fs~ ~ , Pi)), and also for ~pk(4S~ ~ 1), ~b~,(4S(k~ 1) and the norm ! pr176 t~)dp. 

Further, from 

~F ~ = ~F_I~ ,~(v" ~F -'~, ~)*; (F ~(f-'), I) (3z) 
1 

p~ (p),~ ( V r  -'~, o) do 
0 

we get the subsequent approximations s~ p). 

from p = I; each successive a~ p) is substituted in (31) to calculate the eigen- Equation (32) applies 
function, the derivative of this, and the norm. The process converges sufficiently rapidly in the third or 
fourth approximation. The :method enables one to derive not less than 5 or 6 first values for fik and ~k(f~k, 
Pi); the asymptotic solution is sufficiently accurate for k >_ 4.5, so subsequent computations of the eigen- 
values and eigeufunctions, and also any relative quantities, should be done via the asymptotic formulas 

given in [8]. 
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